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THE SUDOKU PUZZLE

The Sudoku puzzle is a discrete constraint
satisfaction problem, where the constraints
address uniqueness of the subsets of the
puzzle, based on some observed “clues”.

There are several ways to solve the problem
one of them being Back Propagation which
includes logical elimination according to the
distinct rules.

The other way used 1s a more probabilistic
approach that allows searching for potential
solutions.

Sinkhorn balancing means obtaining a
unique doubly stochastic matrix from a
arbitrary matrix.

A doubly stochastic matrix 1s a matrix with
non-negative elements whose rows each sum
upto 1 and columns each sum upto 1.



Max number of iterations M
Tolerance e

Repeat :

SINKHORN — BALANCING F°”‘=;;Zzl%rﬁcal:sumandscalecolumns>
ALGORITHM g =q%;  (=12...N)

End For j

Fori=1:N  (Horizontal : sum and scale columns)

Xi= E[ qi[lk]
qi[jk+1] =gq;/X; (j=12,..N)
End For i

If || Q%1 - gl|| <e
Set Q = QI+l
Break

k—k+1

End Repeat
Return Q




PUZZLE DESCRIPTION AND
REPRESENTATION

A Sudoku puzzle is an N X N grid of cells partitioned into N smaller blocks of N elements each.

The puzzle problem is to fill in the cells so that the digits 1,..... ,N appear uniquely in each row and
column of the grid and in each block, starting from some initial set of filled-in cells called “clues.”

The uniqueness requirement imposes 3N constraints on the puzzle.

We denote the contents of cellnby S, € {1,2,..... ,N}forn = 1,2,....,N? , with cells numbered in
row-scan order.

The row constraints are indexed by the numbers 1,..... ,N down the side of the puzzle.

The column constraints are indexed by the numbers N +1,..... ,2N across the top of the puzzle.
Constraint m of the puzzle is satisfied if all N cells associated with it are distinct.

We model the contents of the cells probabilistically.

Let @p = [P(Sn =D PSp=2)......... P(S, =9) ]) be the probability row vector associated with cell
Sn, with individual elements py, ;.

Cells that are specified initially—the clue cells—place all their probability mass on the specified value.

Thus, for the puzzle:

Ps = €4 Pe = €9 p7 = eg etc.

Where ey is a vector of length N with a single 1 at position k and 0 in other positions.

For the non-clue cells (initially empty), the probabilities are uniformly distributed over the possible
outcomes. For example,

p1=3(011010010].




Initialization : Set initial probability vectors
P1-P2s - - - - » Py2 according to initial clues and uniformly in
cells with no clues.
Setk =0
Repeat:
For each constraint m € {1,2,3,....,.3N} :

S I N K H O R N Form the probability constraint matrix Q¥
S UD O KU Sinkhorn balance : QI¥!1 = SB(QI¥)

Extract the probabilities p, from Q¥+
ALGORITHM End for m
Determine most probable contents S, from p, :
S, = argmaxp,
If all constraints are satisfied, Break with success
Increment iteration count : k — k+ 1
If too many iterations, Break with failure
End Repeat




80

RESULTS

The Sinkhorn balancing has lower computational
complexity (per iteration).

It is more robust and can solve more number of
problems

It does not suffer from cycles in the Tanner graph (all
cells are in cycles of length four) as the back
propagation method.

The Sinkhorn balanced matrix is said to be closer in
Kullback Leibler (KL) distance to the constraint
probability matrix for a solved puzzle.

Comparison Table

A B C D
Total number of puzzles 10 15 20 25
No. Sinkhorn Solved 10 15 19 23
No. of iterations 37 52 153 180
No. Back Propogation Solved 4 7 11 13
No. of iterations 6 8 7 9




Unsolved Example

CORNER CASES

The sequence of matrices converges to a doubly stochastic
limit i’ and only 1t the matrix A’ contain at least one
positive diagonal.

A necessary and sufficient condition that there exist
diagonal matrices D, and Dy with positive main diagonals
such that D;AD, 1s both doubly stochastic and the limit of
the iteration 1s that A # 0 and each positive entry of A 13
contained in a positive diagonal.

The diagonal matrices and the solution are all unique.

The form D;ADy1s unique, and D and D, are unique up
to positive scalar multiple if and only it A is fully
indecomposable.

For a lot of cases of very easy ( more filled elements )
sudoku puzzles, I often got the ‘nan’ error in the middle of
the computation. Generally it works better for sparce
matrices.




APPLICATIONS

Sinkhorn balancing also known as Sinkhorn scaling has
been widely studied and makes an appearance in a
variety of applications.

Not surprisingly, the simplicity of the method has led to
its repeated discovery.

It 1s claimed to have first been used in the 1930’s for
calculating traffic flow.

It appeared in 1937 as a method for predicting
telephone traffic distribution

In the numerical analysis community it 1s most usually
named after Sinkhorn andKnopp, who proved
convergence results for the method in the 1960’s, but it is
also known by many other names, such as the RAS
method and Bregman’s balancing method.

It is compared with some well known alternatives,

including PageRank.

It 1s shown that with an appropriate modifications, the
Sinkhorn-Knopp algorithm is a natural candidate for
computing the measure on enormous data sets.
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